Persistence and Stability of Relative Equilibria
نویسنده
چکیده
We consider relative equilibria in symmetric Hamiltonian systems, and their persistence or bifurcation as the momentum is varied. In particular, we extend a classical result about persistence of relative equilibria from values of the momentum map that are regular for the coadjoint action, to arbitrary values, provided that either (i) the relative equilibrium is at a local extremum of the reduced Hamiltonian, or (ii) the action on the phase space is (locally) free. The first case uses just point-set topology, while in the second we rely on the local normal form for (free) symplectic group actions, and then apply the splitting lemma. We also consider the Lyapunov stability of extremal relative equilibria. The group of symmetries is assumed to be compact.
منابع مشابه
Stability by KAM confinement of certain wild, nongeneric relative equilibria of underwater vehicles with coincident centers of mass and bouyancy
Purely rotational relative equilibria of an ellipsoidal underwater vehicle occur at nongeneric momentum where the symplectic reduced spaces change dimension. The stability these relative equilibria under momentum changing perturbations is not accessible by Lyapunov functions obtained from energy and momentum. A blow-up construction transforms the stability problem to the analysis symmetry-break...
متن کاملRelative Lyapunov Centre Bifurcations
Relative equilibria and relative periodic orbits (RPOs) are ubiquitous in symmetric Hamiltonian systems and occur for example in celestial mechanics, molecular dynamics and rigid body motion. Relative equilibria are equilibria and RPOs are periodic orbits of the symmetry reduced system. Relative Lyapunov centre bifurcations are bifurcations of relative periodic orbits from relative equilibria c...
متن کاملOpenness of Momentum Maps and Persistence of Extremal Relative Equilibria
We prove that for every proper Hamiltonian action of a Lie group G in finite dimensions the momentum map is locally G-open relative to its image (i.e. images of G-invariant open sets are open). As an application we deduce that in a Hamiltonian system with continuous Hamiltonian symmetries, extremal relative equilibria persist for every perturbation of the value of the momentum map, provided the...
متن کاملGlobal stability and persistence in LG-Holling type II diseased predator ecosystems.
A Leslie-Gower-Holling type II model is modified to introduce a contagious disease in the predator population, assuming that disease cannot propagate to the prey. All the system's equilibria are determined and the behaviour of the system near them is investigated. The main mathematical issues are global stability and bifurcations for some of the equilibria, together with sufficient conditions f...
متن کاملDYNAMIC COMPLEXITY OF A THREE SPECIES COMPETITIVE FOOD CHAIN MODEL WITH INTER AND INTRA SPECIFIC COMPETITIONS
The present article deals with the inter specific competition and intra-specific competition among predator populations of a prey-dependent three component food chain model consisting of two competitive predator sharing one prey species as their food. The behaviour of the system near the biologically feasible equilibria is thoroughly analyzed. Boundedness and dissipativeness of the system are e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997